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CHAPTER 4

SHALLOW FOUNDATIONS

4-1. Basic Considerations. Shallow foundations may consist of spread footings
supporting isolated columns, combined footings for supporting loads from several
columns, strip footings for supporting walls, and mats for supporting the entire
structure.

a. Significance and Use. These foundations may be used where there is a
suitable bearing stratum near the ground surface and settlement from compression or
consolidation of underlying soil is acceptable. Potential heave of expansive
foundation soils should also be acceptable. Deep foundations should be considered
if a suitable shallow bearing stratum is not present or if the shallow bearing
stratum is underlain by weak, compressible soil.

b. Settlement Limitations. Settlement limitation requirements in most cases
control the pressure which can be applied to the soil by the footing. Acceptable
limits for total downward settlement or heave are often 1 to 2 inches or less.
Refer to EM 1110-1-1904 for evaluation of settlement or heave.

(1) Total Settlement. Total settlement should be limited to avoid damage
with connections in structures to outside utilities, to maintain adequate drainage
and serviceability, and to maintain adequate freeboard of embankments. A typical
allowable settlement for structures is 1 inch.

(2) Differential Settlement. Differential settlement nearly always occurs
with total settlement and must be limited to avoid cracking and other damage in
structures. A typical allowable differential/span length ratio ∆/L for steel and
concrete frame structures is 1/500 where ∆ is the differential movement within
span length L.

c. Bearing Capacity. The ultimate bearing capacity should be evaluated using
results from a detailed in situ and laboratory study with suitable theoretical
analyses given in 4-2. Design and allowable bearing capacities are subsequently
determined according to Table 1-1.

4-2. Solution of Bearing Capacity. Shallow foundations such as footings or mats
may undergo either a general or local shear failure. Local shear occurs in loose
sands which undergo large strains without complete failure. Local shear may also
occur for foundations in sensitive soils with high ratios of peak to residual
strength. The failure pattern for general shear is modeled by Figure 1-3.
Solutions of the general equation are provided using the Terzaghi, Meyerhof, Hansen
and Vesic models. Each of these models have different capabilities for considering
foundation geometry and soil conditions. Two or more models should be used for each
design case when practical to increase confidence in the bearing capacity analyses.

a. General Equation. The ultimate bearing capacity of the foundation shown
in Figure 1-6 can be determined using the general bearing capacity Equation 1-1
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(4-1)

where

qu = ultimate bearing capacity, ksf
c = unit soil cohesion, ksf
B’ = minimum effective width of foundatio n B - 2e B, ft
eB = eccentricity parallel with foundation width B, M B/Q, ft
MB = bending moment parallel with width B, kips-ft
Q = vertical load applied on foundation, kips
γ ’ H = effective unit weight beneath foundation base within the failure

zone, kips/ft 3

σ’ D = effective soil or surcharge pressure at the foundation depth D,
γ ’ D D, ksf

γ ’ D = effective unit weight of soil from ground surface to foundation
depth, kips/ft 3

D = foundation depth, ft
Nc,N γ,N q = dimensionless bearing capacity factors of cohesion c, soil

weight in the failure wedge, and surcharge q terms
ζc, ζ γ, ζq = dimensionless correction factors of cohesion c, soil weight

in the failure wedge, and surcharge q accounting for
foundation geometry and soil type

(1) Net Bearing Capacity. The net ultimate bearing capacity q’ u is the
maximum pressure that may be applied to the base of the foundation without
undergoing a shear failure that is in addition to the overburden pressure at depth
D.

(4-2)

(2) Bearing Capacity Factors. The dimensionless bearing capacity factors
Nc, N q, and N γ are functions of the effective friction angle φ’ and depend on the
model selected for solution of Equation 4-1.

(3) Correction Factors. The dimensionless correction factors ζ consider a
variety of options for modeling actual soil and foundation conditions and depend on
the model selected for solution of the ultimate bearing capacity. These options are
foundation shape with eccentricity, inclined loading, foundation depth, foundation
base on a slope, and a tilted foundation base.

b. Terzaghi Model. An early approximate solution to bearing capacity was
defined as general shear failure (Terzaghi 1943). The Terzaghi model is applicable
to level strip footings placed on or near a level ground surface where foundation
depth D is less than the minimum width B. Assumptions include use of a surface
footing on soil at plastic equilibrium and a failure surface similar to Figure 1-3a.
Shear resistance of soil above the base of an embedded foundation is not included in
the solution.
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(1) Bearing Capacity Factors. The Terzaghi bearing capacity factors N c and
Nq for general shear are shown in Table 4-1 and may be calculated by

TABLE 4-1

Terzaghi Dimensionless Bearing Capacity Factors (after Bowles 1988)

φ’ N q Nc Nγ

28 17.81 31.61 15.7
30 22.46 37.16 19.7
32 28.52 44.04 27.9
34 36.50 52.64 36.0
35 41.44 57.75 42.4
36 47.16 63.53 52.0
38 61.55 77.50 80.0
40 81.27 95.66 100.4
42 108.75 119.67 180.0
44 147.74 151.95 257.0
45 173.29 172.29 297.5
46 204.19 196.22 420.0
48 287.85 258.29 780.1
50 415.15 347.51 1153.2

φ’ N q Nc Nγ

0 1.00 5.70 0.0
2 1.22 6.30 0.2
4 1.49 6.97 0.4
6 1.81 7.73 0.6
8 2.21 8.60 0.9

10 2.69 9.60 1.2
12 3.29 10.76 1.7
14 4.02 12.11 2.3
16 4.92 13.68 3.0
18 6.04 15.52 3.9
20 7.44 17.69 4.9
22 9.19 20.27 5.8
24 11.40 23.36 7.8
26 14.21 27.09 11.7

(4-3a)

(4-3b)

Factor N γ depends largely on the assumption of the angle ψ in Figure 1-3a. N γ

varies from minimum values using Hansen’s solution to maximum values using the
original Terzaghi solution. N γ shown in Table 4-1, was backfigured from the
original Terzaghi values assuming ψ = φ’ (Bowles 1988).

(2) Correction Factors. The Terzaghi correction factors ζc and ζ γ

consider foundation shape only and are given in Table 4-2. ζq = 1.0 (Bowles 1988).

TABLE 4-2

Terzaghi Correction Factors ζc and ζ γ

Factor Strip Square Circular

ζc 1.0 1.3 1.3
ζ γ 1.0 0.8 0.6
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c. Meyerhof Model. This solution considers correction factors for
eccentricity, load inclination, and foundation depth. The influence of the shear
strength of soil above the base of the foundation is considered in this solution.
Therefore, beneficial effects of the foundation depth can be included in the
analysis. Assumptions include use of a shape factor ζq for surcharge, soil at
plastic equilibrium, and a log spiral failure surface that includes shear above the
base of the foundation. The angle ψ = 45 + φ/2 was used for determination of N γ.
Table 4-3 illustrates the Meyerhof dimensionless bearing capacity and correction
factors required for solution of Equation 4-1 (Meyerhof 1963).

(1) Bearing Capacity Factors. Table 4-4 provides the bearing capacity
factors in 2-degree intervals.

(2) Correction Factors. Correction factors are given by

Cohesion: ζc = ζcs ζci ζcd

Wedge: ζ γ = ζ γs ζ γ i ζ γd

Surcharge: ζq = ζqs ζqi ζqd

where subscript s indicates shape with eccentricity, subscript i indicates
inclined loading, and d indicates foundation depth.

(3) Eccentricity. The influence of bending moments on bearing capacity can
be estimated by converting bending moments to an equivalent eccentricity e.
Footing dimensions are then reduced to consider the adverse effect of eccentricity.

(a) Effective footing dimensions may be given by

(4-4a)

(4-4b)

(4-4c)

(4-4d)

where

MB = bending moment parallel with foundation width B, kips-ft
MW = bending moment parallel with foundation length W, kips-ft

Orientation of axes, eccentricities,and bending moments are shown in Table 4-3.

(b) The ultimate load applied to footings to cause a bearing failure is

(4-5)

where

qu = ultimate bearing capacity of Equation 4-1 considering eccentricity
in the foundation shape correction factor, Table 4-3, ksf

Ae = effective area of the foundation B’W’, ft 2
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TABLE 4-4

Meyerhof, Hansen, and Vesic Dimensionless Bearing Capacity Factors

Nγ

φ Nφ Nc Nq Meyerhof Hansen Vesic

0 1.00 5.14 1.00 0.00 0.00 0.00
2 1.07 5.63 1.20 0.01 0.01 0.15
4 1.15 6.18 1.43 0.04 0.05 0.34
6 1.23 6.81 1.72 0.11 0.11 0.57
8 1.32 7.53 2.06 0.21 0.22 0.86

10 1.42 8.34 2.47 0.37 0.39 1.22
12 1.52 9.28 2.97 0.60 0.63 1.69
14 1.64 10.37 3.59 0.92 0.97 2.29
16 1.76 11.63 4.34 1.37 1.43 3.06
18 1.89 13.10 5.26 2.00 2.08 4.07
20 2.04 14.83 6.40 2.87 2.95 5.39
22 2.20 16.88 7.82 4.07 4.13 7.13
24 2.37 19.32 9.60 5.72 5.75 9.44
26 2.56 22.25 11.85 8.00 7.94 12.54
28 2.77 25.80 14.72 11.19 10.94 16.72
30 3.00 30.14 18.40 15.67 15.07 22.40
32 3.25 35.49 23.18 22.02 20.79 30.21
34 3.54 42.16 29.44 31.15 28.77 41.06
36 3.85 50.59 37.75 44.43 40.05 56.31
38 4.20 61.35 48.93 64.07 56.17 78.02
40 4.60 75.31 64.19 93.69 79.54 109.41
42 5.04 93.71 85.37 139.32 113.95 155.54
44 5.55 118.37 115.31 211.41 165.58 224.63
46 6.13 152.10 158.50 328.73 244.64 330.33
48 6.79 199.26 222.30 526.44 368.88 495.99
50 7.55 266.88 319.05 873.84 568.56 762.85

(c) The bearing capacity of eccentric loaded foundations may also be
estimated by (Meyerhof 1953)

(4-6)

where R e is defined for cohesive soil by

(4-7a)

and for cohesionless soil (0 < e/B < 0.3) by

(4-7b)
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where

qu = ultimate capacity of a centrally loaded foundation found from
Equation 4-1 ignoring bending moments, ksf

e = eccentricity from Equations 4-4c and 4-4d, ft

d. Hansen Model. The Hansen model considers tilted bases and slopes in
addition to foundation shape and eccentricity, load inclination, and foundation
depth. Assumptions are based on an extension of Meyerhof’s work to include tilting
of the base and construction on a slope. Any D/B ratio may be used permitting
bearing capacity analysis of both shallow and deep foundations. Bearing capacity
factors N c and Nq are the same as Meyerhof’s factors. N γ is calculated assuming
ψ = 45 + φ/2. These values of N γ are least of the methods. Correction factors
ζc, ζ γ, and ζq in Equation 4-1 are

Cohesion: ζc = ζcs ζci ζcd ζcβ ζc δ (4-8a)
Wedge: ζ γ = ζ γs ζ γ i ζ γd ζ γβ ζ γ δ (4-8b)
Surcharge: ζq = ζqs ζqi ζqd ζqβ ζqδ (4-8c)

where subscripts s, i, d, β, and δ indicate shape with eccentricity, inclined
loading, foundation depth, ground slope, and base tilt, respectively. Table 4-5
illustrates the Hansen dimensionless bearing capacity and correction factors for
solution of Equation 4-1.

(1) Restrictions. Foundation shape with eccentricity ζcs , ζ γs, and ζqs and
inclined loading ζci , ζ γ i , and ζqi correction factors may not be used
simultaneously. Correction factors not used are unity.

(2) Eccentricity. Influence of bending moments is evaluated as in the
Meyerhof model.

(3) Inclined loads. The B component in Equation 4-1 should be width B if
horizontal load T is parallel with B or should be W if T is parallel with
length W.

e. Vesic Model. Table 4-6 illustrates the Vesic dimensionless bearing
capacity and correction factors for solution of Equation 4-1.

(1) Bearing Capacity Factors. Nc and Nq are identical with Meyerhof’s and
Hansen’s factors. N γ was taken from an analysis by Caquot and Kerisel (1953) using
ψ = 45 + φ/2.

(2) Local Shear. A conservative estimate of N q may be given by

(4-9)

Equation 4-9 assumes a local shear failure and leads to a lower bound estimate of
qu. N q from Equation 4-9 may also be used to calculate N c and Nγ by the
equations given in Table 4-6.
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f. Computer Solutions. Analyses by computer programs provide effective
methods of estimating ultimate and allowable bearing capacities.

(1) Program CBEAR. Program CBEAR (Mosher and Pace 1982) can be used to
calculate the bearing capacity of shallow strip, rectangular, square, or circular
footings on one or two soil layers. This program uses the Meyerhof and Vesic
bearing capacity factors and correction factors.

(2) Program UTEXAS2. UTEXAS2 is a slope stability program that can be used
to calculate factors of safety for long wall footings and embankments consisting of
multilayered soils (Edris 1987). Foundation loads are applied as surface pressures
on flat surfaces or slopes. Circular or noncircular failure surfaces may be
assumed. Noncircular failure surfaces may be straight lines and include wedges.
Shear surfaces are directed to the left of applied surface loading on horizontal
slopes or in the direction in which gravity would produce sliding on nonhorizontal
slopes (e.g., from high toward low elevation points). This program can also
consider the beneficial effect of internal reinforcement in the slope. q u

calculated by UTEXAS2 may be different from that calculated by CBEAR partly because
the FS is defined in UTEXAS2 as the available shear strength divided by the shear
stress on the failure surface. The assumed failure surfaces in CBEAR are not the
same as the minimum FS surface found in UTEXAS2 by trial and error. FS in Table 1-2
are typical for CBEAR. Program UTEXAS2 calculates factors of safety, but these FS
have not been validated with field experience. UTEXAS2 is recommended as a
supplement to the Terzaghi, Meyerhof, Hansen, and Vesic models until FS determined
by UTEXAS2 have been validated.

g. Multilayer Soils. Foundations are often supported by multilayer soils.
Multiple soil layers influence the depth of the failure surface and the calculated
bearing capacity. Solutions of bearing capacity for a footing in a strong layer
that is overlying a weak clay layer, Figure 4-1, are given below. These solutions
are valid for a punching shear failure. The use of more than two soil layers to
model the subsurface soils is usually not necessary.

Figure 4-1. Schematic of a multilayer foundation-soil system
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(1) Depth of Analysis. The maximum depth of the soil profile analyzed need
not be much greater than the depth to the failure surface, which is approximately
2B for uniform soil. A deeper depth may be required for settlement analyses.

(a) If the soil immediately beneath the foundation is weaker than deeper
soil, the critical failure surface may be at a depth less than 2B.

(b) If the soil is weaker at depths greater than 2B, then the critical
failure surface may extend to depths greater than 2B.

(2) Dense Sand Over Soft Clay. The ultimate bearing capacity of a footing in
a dense sand over soft clay can be calculated assuming a punching shear failure
using a circular slip path (Hanna and Meyerhof 1980; Meyerhof 1974)

Wall Footing:

(4-10a)

Circular Footing:

(4-10b)

where

qu,b = ultimate bearing capacity on a very thick bed of the bottom
soft clay layer, ksf

γ sand = wet unit weight of the upper dense sand, kips/ft 3

Ht = depth below footing base to soft clay, ft
D = depth of footing base below ground surface, ft
Kps = punching shear coefficient, Figure 4-2a,4-2b, and 4-2c
φsand = angle of internal friction of upper dense sand, degrees
Ss = shape factor
qut = ultimate bearing capacity of upper dense sand, ksf

The punching shear coefficient k ps can be found from the charts in Figure 4-2
using the undrained shear strength of the lower soft clay and a punching shear
parameter C ps. C ps, ratio of ζ/ φsand where ζ is the average mobilized angle of
shearing resistance on the assumed failure plane, is found from Figure 4-2d using
φsand and the bearing capacity ratio R bc. R bc = 0.5 γ sand BNγ/(C uNc). B is the diameter
of a circular footing or width of a wall footing. The shape factor S s, which
varies from 1.1 to 1.27, may be assumed unity for conservative design.

(3) Stiff Over Soft Clay. Punching shear failure is assumed for stiff over
soft clay.

(a) D = 0.0. The ultimate bearing capacity can be calculated for a footing
on the ground surface by (Brown and Meyerhof 1969)
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Figure 4-2. Charts for calculation of ultimate bearing capacity
of dense sand over soft clay (Data from Hanna and Meyerhof 1980)
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Wall Footing:
(4-11a)

(4-11b)
Circular Footing:

(4-11c)

(4-11d)

where

Cu,upper = undrained shear strength of the stiff upper clay, ksf
Cu,lower = undrained shear strength of the soft lower clay, ksf
Ncw,0 = bearing capacity factor of the wall footing
Ncc,0 = bearing capacity factor of the circular footing
Bdia = diameter of circular footing, ft

A rectangular footing may be converted to a circular footing by B dia = 2(BW/ π) 1/2

where B = width and W = length of the footing. Factors N cw,0 and Ncc,0 will
overestimate bearing capacity by about 10 percent if C u,lower /C u,upper ≥ 0.7. Refer to
Brown and Meyerhof (1969) for charts of N cw,0 and Ncc,0 .

(b) D > 0.0. The ultimate bearing capacity can be calculated for a footing
placed at depth D by

Wall Footing: (4-12a)

Circular Footing: (4-12b)

where

Ncw,D = bearing capacity factor of wall footing with D > 0.0
Ncc,D = bearing capacity factor of rectangular footing wit h D > 0.0

= Ncw,D [1 + 0.2(B/W)]
γ = wet unit soil weight of upper soil, kips/ft 3

D = depth of footing, ft

Ncw,D may be found using Table 4-7 and N cw,0 from Equation 4-11b. Refer to
Department of the Navy (1982) for charts that can be used to calculate bearing
capacities in two layer soils.

(4) Computer Analysis. The bearing capacity of multilayer soils may be
estimated from computer solutions using program CBEAR (Mosher and Pace 1982).
Program UTEXAS2 (Edris 1987) calculates FS for wall footings and embankments, which
have not been validated with field experience. UTEXAS2 is recommended as a
supplement to CBEAR until FS have been validated.
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TABLE 4-7

Influence of Footing Depth D
(Department of the Navy 1982)

D/B Ncw,D /N cw,0

0.0 1.00
0.5 1.15
1.0 1.24
2.0 1.36
3.0 1.43
4.0 1.46

h. Correction for Large Footings and Mats. Bearing capacity, obtained using
Equation 4-1 and the bearing capacity factors, gives capacities that are too large
for widths B > 6 ft. This is apparently because the 0.5 B’ γ ’ HNγ ζ γ term becomes
too large (DeBeer 1965; Vesic 1969).

(1) Settlement usually controls the design and loading of large dimensioned
structures because the foundation soil is stressed by the applied loads to deep
depths.

(2) Bearing capacity may be corrected for large footings or mats by
multiplying the surcharge term 0.5 B’ γ ’HNγ ζ γ by a reduction factor (Bowles 1988)

(4-13)
where B > 6 ft.

i. Presumptive Bearing Capacity. Refer to Table 4-8 for typical presumptive
allowable bearing pressures q na. Presumptive allowable pressures should only be
used with caution for spread footings supporting small or temporary structures and
verified, if practical, by performance of nearby structures. Further details are
given in Chapter 4 of Department of the Navy (1982).

(1) Bearing pressures produced by eccentric loads that include dead plus
normal live loads plus permanent lateral loads should not exceed q na pressures of
Table 4-8.

(2) Transient live loads from wind and earthquakes may exceed the allowable
bearing pressure by up to one-third.

(3) For footings of width B < 3 ft in least lateral dimension the
allowable bearing pressures is B times 1/3 of q na given in Table 4-8.
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TABLE 4-8

Presumptive Allowable Bearing Pressures for Spread Footings
(Data from Department of the Navy 1982, Table 1, Chapter 4)

Nominal Allowable
Bearing Material In Place Consistency Bearing Pressure

q , ksf
na

Massive crystalline igneous and Hard sound rock 160
metamorphic rock: granite,
diorite, basalt, gneiss,
thoroughly cemented conglomerate
(sound condition allows minor
cracks)

Foliated metamorphic rock: Medium hard sound 70
slate, schist (sound condition rock
allows minor cracks)

Sedimentary rock; hard cemented Medium hard sound 40
shales, siltstone, sandstone, rock
limestone without cavities

Weathered or broken bed rock of Soft rock 20
any kind except highly
argillaceousrock (shale); Rock
Quality Designation less than 25

Compaction shale or other highly Soft rock 20
argillaceous rock in sound
condition

Well-graded mixture of fine and Very compact 20
coarse-grained soil: glacial
till, hardpan, boulder clay
(GW-GC, GC, SC)

Gravel, gravel-sand mixtures, Very compact 14
boulder gravel mixtures (SW, Medium to compact 10
SP, SW, SP) Loose 6

Coarse to medium sand, sand with Very compact 8
little gravel (SW, SP) Medium to compact 6

Loose 3

Fine to medium sand, silty or Very compact 6
clayey medium to coarse sand Medium to compact 5
(SW, SM, SC) Loose 3

Homogeneous inorganic clay, Very stiff to hard 8
sandy or silty clay (CL, CH) Medium to stiff 4

Soft 1

Inorganic silt, sandy or clayey Very stiff to hard 6
silt, varved silt-clay-fine sand Medium to stiff 3

Soft 1
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(4) For a bearing stratum underlain by weaker material, pressure on the weak
stratum should be less than the nominal allowable bearing pressure given in
Table 4-8

(4-14)

where

Q = vertical load on foundation, kips
B = foundation width, ft
W = foundation lateral length, ft
Ht = depth to weak stratum beneath bottom of foundation, ft
qna = nominal allowable bearing pressure, ksf

(5) Resistance to uplift force Q up should be

(4-15)

where W’T is the total effective weight of soil and foundation resisting uplift.

4-3. Retaining Walls.

a. Ultimate Bearing Capacity. Ultimate bearing capacity of retaining walls
may be estimated by Equation 4-1 with dimensionless factors provided by the
Meyerhof, Hansen, or Vesic methods described in Tables 4-3, 4-5, and 4-6,
respectively. The dimensionless correction factors need consider only depth and
load inclination for retaining walls. Equation 4-1 may be rewritten

(4-16)

where N c,N γ,N q and ζc, ζ γ, ζq are given in Tables 4-3, 4-4, 4-5, or 4-6. If
Hansen’s model is used, then the exponent for ζ γ i and ζqi in Table 4-5
should be changed from 5 to 2 (Bowles 1988).

b. Allowable Bearing Capacity. The allowable bearing capacity may be
estimated from Equations 1-2 using F S = 2 for cohesionless soils and F S = 3 for
cohesive soils.

4-4. In Situ Modeling of Bearing Pressures. In situ load tests of the full size
foundation are not usually done, except for load testing of piles and drilled
shafts. Full scale testing is usually not performed because required loads are
usually large and as a result these tests are expensive. The most common method is
to estimate the bearing capacity of the soil from the results of relatively simple,
less expensive in situ tests such as plate bearing, standard penetration, cone
penetration, and vane shear tests.
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a. Plate Bearing Test. Loading small plates 12 to 30 inches in diameter or
width B p are quite useful, particularly in sands, for estimating the bearing
capacity of foundations. The soil strata within a depth 4B beneath the foundation
must be similar to the strata beneath the plate. Details of this test are described
in standard method ASTM D 1194. A large vehicle can be used to provide reaction for
the applied pressures.

(1) Constant Strength. The ultimate bearing capacity of the foundation in
cohesive soil of constant shear strength may be estimated by

(4-17a)

where

qu = ultimate bearing capacity of the foundation, ksf
qu,p = ultimate bearing capacity of the plate, ksf
B = diameter or width of the foundation, ft
Bp = diameter or width of the plate, ft

(2) Strength Increasing Linearly With Depth. The ultimate bearing capacity
of the foundation in cohesionless or cohesive soil with strength increasing linearly
with depth may be estimated by

(4-17b)

(3) Extrapolation of Settlement Test Results in Sands. The soil pressure q 1

may be estimated using a modified Terzaghi and Peck approximation (Peck and Bazarra
1969; Peck, Hanson, and Thornburn 1974)

(4-18)

where

q1 = soil pressure per inch of settlement, ksf/in.
q = average pressure applied on plate, ksf
ρi = immediate settlement of plate, in.

The results of the plate load test should indicate that q/ ρi is essentially
constant. q 1 and plate diameter B p can then be input into the Terzaghi and Peck
chart for the appropriate D/B ratio, which is 1, 0.5 or 0.25 (see Figure 3-3, EM
1110-1-1904). The actual footing dimension B is subsequently input into the same
chart to indicate the allowable foundation bearing pressure.
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(4) Extrapolation of Test Results. Load tests performed using several plate
sizes may allow extrapolation of test results to foundations up to 6 times the plate
diameter provided the soil is similar. Other in situ test results using standard
penetration or cone penetration data are recommended for large foundation diameters
and depths more than 4B p.

b. Standard Penetration Test (SPT). The SPT may be used to directly obtain
the allowable bearing capacity of soils for specific amounts of settlement based on
past correlations.

(1) Footings. Meyerhof’s equations (Meyerhof 1956; Meyerhof 1974) are
modified to increase bearing capacity by 50 percent (Bowles 1988)

(4-19a)

(4-19b)

where

qa,1 = allowable bearing capacity for 1 inch of settlement, ksf
Kd = 1 + 0.33(D/B) ≤ 1.33
Nn = standard penetration resistance corrected to n percent energy

Equation 4-19b may be used for footings up to 15 ft wide.

(a) F factors depend on the energy of the blows. n is approximately
55 percent for uncorrected penetration resistance and F 1 = 2.5, F 2 = 4, and F 3 =
1. F factors corrected to n = 70 percent energy are F 1 = 2, F 2 = 3.2 and F 3 =
1.

(b) Figure 3-3 of EM 1110-1-1904 provides charts for estimating q a for
1 inch of settlement from SPT data using modified Terzaghi and Peck approximations.

(2) Mats. For mat foundations

(4-20a)

where q a,1 is the allowable bearing capacity for limiting settlement to 1 inch. The
allowable bearing capacity for any settlement q a may be linearly related to the
allowable settlement for 1 inch obtained from Equations 4-19 assuming settlement
varies in proportion to pressure

(4-20b)
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where

ρ = settlement, inches
qa,1 = allowable bearing capacity for 1 inch settlement, ksf

c. Cone Penetration Test (CPT). Bearing capacity has been correlated with
cone tip resistance q c for shallow foundations with D/B ≤ 1.5 (Schmertmann 1978).

(1) The ultimate bearing capacity of cohesionless soils is given by

(4-21a)

(4-21b)

where q u and q c are in units of tsf or kg/cm 2.

(2) The ultimate bearing capacity of cohesive soils is

(4-22a)

(4-22b)

Units are also in tsf or kg/cm 2. Table 4-9 using Figure 4-3 provides a procedure
for estimating q u for footings up t o B = 8 ft in width.

d. Vane Shear Test. The vane shear is suitable for cohesive soil because
bearing capacity is governed by short-term, undrained loading which is simulated by
this test. Bearing capacity can be estimated by (Canadian Geotechnical Society
1985)

(4-24)

where

Rv = strength reduction factor, Figure 4-4
τu = field vane undrained shear strength measured during the test, ksf
D = depth of foundation, ft
B = width of foundation, ft
L = length of foundation, ft
σvo = total vertical soil overburden pressure at the foundation level, ksf

4-5. Examples. Estimation of the bearing capacity is given below for (1) a wall
footing placed on the ground surface subjected to a vertical load, (2) a rectangular
footing placed below the ground surface and subjected to an inclined load, and (3) a
tilted, rectangular footing on a slope and subjected to an eccentric load.
Additional examples are provided in the user manual for CBEAR (Mosher and Pace
1982). The slope stability analysis of embankments is described in the user manual
for UTEXAS2 (Edris 1987). Bearing capacity analyses should be performed using at
least three methods where practical.
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TABLE 4-9

CPT Procedure for Estimating Bearing Capacity
of Footings on Cohesive Soil (Data from Tand, Funegard, and Briaud 1986)

Step Procedure

1 Determine equivalent q c from footing base to 1.5B below base by

(4-23a)
where

qc = equivalent cone tip bearing pressure below footing, ksf
qcb1 = average tip resistance from 0.0 to 0.5B, ksf
qcb2 = average cone tip resistance from 0.5B to 1.5B, ksf

2 Determine equivalent depth of embedment D e , ft, to account for effect of
strong or weak soil above the bearing elevation

(4-23b)
where

n = number of depth increments to depth D
D = unadjusted (actual) depth of embedment, ft
∆z i = depth increment i, ft
qci = cone tip resistance of depth increment i, ksf
qc = equivalent cone tip bearing pressure below footing, ksf

3 Determine ratio of equivalent embedment depth to footing width

(4-23c)

4 Estimate bearing ratio R k from Figure 4-3 using R d. The lower bound curve
is applicable to fissured or slickensided clays. The average curve is
applicable to all other clays unless load tests verify the upper bound curve
for intact clay.

5 Estimate total overburden pressure σvo, then calculate

(4-23d)

where q ua = ultimate bearing capacity of axially loaded square or round
footings with horizontal ground surface and base. Adjust q ua obtained from
Equation 4-23d for shape, eccentric loads, sloping ground or tilted base
using Hansen’s factors for cohesion, Table 4-5, to obtain the ultimate
capacity

(4-23e)

where ζc is defined by Equation 4-8a.
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Figure 4-3. Bearing ratio R k for axially loaded square
and round footings (Data from Tand, Funegard, and Briaud 1986)

Figure 4-4. Strength reduction factor for field vane shear
(Data from Bjerrum 1973)
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a. Wall Footing. A wall footing 3 ft wide with a loa d Q = 12 kips/ft
(bearing pressure q = 4 ksf) is proposed to support a portion of a structure in a
selected construction site. The footing is assumed to be placed on or near the
ground surface for this analysis such tha t D = 0.0 ft, Figure 4-5, and σ’ D = 0.0.
Depth H is expected to be < 2B o r < 6 ft.

(1) Soil Exploration. Soil exploration indicated a laterally uniform
cohesive soil in the proposed site. Undrained triaxial compression test results
were performed on specimens of undisturbed soil samples to determine the undrained
shear strength. Confining pressures on these specimens were equal to the total
vertical overburden pressure applied to these specimens when in the field. Results
of these tests indicated the distribution of shear strength with depth shown in
Figure 4-6. The minimum shear strength c = C u of 1.4 ksf observed 5 to 7 ft below
ground surface is selected for the analysis. The friction angle is φ = 0.0 deg and
the wet unit weight is 120 psf.

(2) Ultimate Bearing Capacity

(a) Terzaghi Method. Table 4-1 indicates N c = 5.7, N q = 1.0 and N γ = 0.00.
The total ultimate capacity q u is

The Terzaghi method indicates an ultimate bearing capacity q u = 8 ksf.

(b) Meyerhof Method. The ultimate bearing capacity of this wall footing
using program CBEAR yields q u = 7.196 ksf. The Hansen and Vesic solutions will be
similar.

(3) Allowable Bearing Capacity. FS for this problem from Table 1-2 is 3.0.
Therefore, q a using Equation 1-2a is q u/FS = 8.000/3 = 2.7 ksf from the Terzaghi
solution and 7.196/3 = 2.4 ksf from CBEAR. The solution using program UTEXAS2 gives
a minimum FS = 2.2 for a circular failure surface of radius 3 ft with its center at
the left edge of the footing.

(4) Recommendation. qa ranges from 2.4 to 2.7 while the proposed design
pressure q d is 4 ksf. q d should be reduced to 2.4 ksf ≤ qa.

b. Rectangular Footing With Inclined Load. A rectangular footing with B = 3
ft, W = 6 ft, D = 2 ft, similar to Figure 1-6, is to be placed in cohesionless soil
on a horizontal surface ( β = 0.0) and without base tilt ( δ = 0.0). The effective
friction angle φ’ = 30 deg and cohesion c = c u = 0.0. The surcharge soil has a
wet (moist) unit weight γD = 0.120 kip/ft 3 (120 pcf), subsurface soil has a wet
(moist) unit weight γH = 0.130 kip/ft 3 (130 pcf), and depth to groundwater is D GWT =
3 ft. The saturated unit weight is assumed the same as the wet unit weight. The
applied vertical load on the foundation i s Q = 10 kips and the horizontal load T =
+2 kips to the right.
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Figure 4-5. Example wall footing bearing capacity analysis

Figure 4-6. Example undrained shear strength distribution with depth
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(1) Effective Stress Adjustment. Adjust the unit soil weights due to the
water table using Equation 1-6

γHSUB = γH - γw = 0.130 - 0.0625 = 0.0675 kip/ft 3

H = B tan(45 + φ/2) = 3.00 1.73 = 5.2 ft
γ ’ H = γHSUB + [(D GWT - D)/H] γw = 0.0675 + [(3 - 2)/5.2] 0.0625

= 0.08 kip/ft 3

From Equation 1-7a, σ’ D = σD = γD D = 0.120 2.00 = 0.24 ksf

(2) Meyerhof Method. For φ’ = 30 deg, N q = 18.40, N γ = 15.67, and N φ = 3.00
from Table 4-4. N c is not needed since c = 0.0. From Table 4-3,

(a) Wedge correction factor ζ γ = ζ γs ζ γ i ζ γd

ζ γs = 1 + 0.1 N φ (B’/W’ ) = 1 + 0.1 3.00 (3/6) = 1.15
R = (Q2 + T2) 0.5 = (100 + 4) 0.5 = 10.2
θ = cos -1 (Q/R) = cos -1 (10/10.2) = 11.4 deg < φ = 30 deg
ζ γ i = [1 - ( θ/ φ’)] 2 = [1 - (11.4/30)] 2 = 0.384

ζ γd = 1 + 0.1 √Nφ (D/B ) = 1 + 0.1 1.73 (2/3) = 1.115
ζ = 1.15 0.384 1.115 = 0.49

(b) Surcharge correction factor ζq = ζqs ζqi ζqd

ζqs = ζ γs = 1.15
ζqi = [1 - ( θ/90)] 2 = [1 - (11.4/90)] 2 = 0.763
ζqd = ζ γd = 1.115
ζq = 1.15 0.763 1.115 = 0.98

(c) Total ultimate bearing capacity from Equation 4-1 is

qu = 0.5 B γ ’HNγ ζ γ + σ’D Nq ζq

= 0.5 3.00 0.08 15.67 0.49 + 0.24 18.40 0.98
= 0.92 + 4.33 = 5.25 ksf

(3) Hansen Method. For φ’ = 30 deg, N q = 18.40, N γ = 15.07, and N φ = 3.00
from Table 4-4. N c is not needed sinc e c = 0.0. From Table 4-5,

(a) Wedge correction factor ζ γ = ζ γs ζ γ i ζ γd ζ γβ ζ γ δ where ζ γβ = ζ γ δ

= 1.00

ζ γs = 1 - 0.4 (B’/W’ ) = 1 - 0.4 (3/6) = 0.80
ζ γ i = [1 - (0.7T/Q)] 5 = [1 - (0.7 T/10)] 5 = 0.47
ζ γd = 1.00
ζ γ = 0.80 0.47 1.00 = 0.376

(b) Surcharge correction factor ζq = ζqs ζqi ζqd ζqβ ζqδ where ζqβ = ζqδ

= 1.00
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ζqs = 1 + (B/W) tan φ = 1 + (3/6) 0.577 = 1.289
ζqi = [1 - (0.5T/Q)] 5 = [1 - (0.5 2/10)] 5 = 0.59
k = D/B = 2/3
ζqd = 1 + 2 tan φ’ (1 - sin φ’) 2 k = 1 + 2 0.577 (1 - 0.5) 2 2/3

= 1.192
ζq = 1.289 0.59 1.192 = 0.907

(c) Total ultimate bearing capacity from Equation 4-1 is

qu = 0.5 B γ ’H Nγ ζ γ + σ’D Nq ζq

= 0.5 3.00 0.08 15.07 0.376 + 0.24 18.40 0.907
= 0.68 + 4.01 = 4.69 ksf

(4) Vesic Method. For φ’ = 30 deg, N q = 18.40, N γ = 22.40, and N φ = 3.00
from Table 4-4. N c is not needed. From Table 4-6,

(a) Wedge correction factor ζ γ = ζ γs ζ γ i ζ γd ζ γβ ζ γ δ where ζ γβ = ζ γ δ

= 1.00

ζ γs = 1 - 0.4 B/W = 1 - 0.4 3/6 = 0.80
RBW = B/W = 3/6 = 0.5
m = (2 + RBW)/(1 + R BW) = (2 + 0.5)/(1 + 0.5) = 1.67

ζ γ i = [(1 - (T/Q)] m+1 = [1 - (2/10)] 1.67+1 = 0.551

ζ γ = 0.80 0.551 1.00 = 0.441

(b) Surcharge correction factor ζq = ζqs ζqi ζqd ζqβ ζqδ where ζqβ =
ζqδ = 1.00

ζqs = 1 + (B/W) tan φ = 1 + 3/6 0.577 = 1.289
ζqi = [1 - (T/Q)] m = [1 - (2/10)] m = 0.689
ζqd = 1 + 2 tan φ’ (1 - sin φ’) 2 k = 1 + 2 0.577 (1 - 0.5) 2/3

= 1.192
ζq = 1.289 0.689 1.192 = 1.058

(c) Total ultimate bearing capacity from Equation 3-1a is

qu = 0.5 B γ ’H Nγ ζ γ + σ’D Nq ζq

= 0.5 3.00 0.08 22.40 0.441 + 0.24 18.40 1.058
= 1.19 + 4.67 = 5.86 ksf

(5) Program CBEAR. Zero elevation for this problem is defined 3 ft below the
foundation base. Input to this program is as follows (refer to Figure 1-6):

(a) Foundation coordinates: x 1 = 10.00, y 1 = 3.00
x2 = 13.00, y 2 = 3.00

Length of footing: = 6.00
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(b) Soil Coordinates: x 1 = x s1 = 10.00, y 1 = y s1 = 3.00
(top elevation of x 2 = x s2 = 13.00, y 2 = y s2 = 3.00

subsurface soil)

(c) Soil Properties: moist (wet) unit weight γH = 130 pounds/ft 3

(subsurface soil) saturated unit weight = γH

friction angle = 30 deg
cohesion = 0.00

(d) Options: One surcharge y coordinate of top of
layer surcharge = 5.00 ft

moist unit weight = 120 pounds/ft 3

saturated unit weight = 120 pounds/ft 3

Water table y coordinate of top of
description water table = 2.00 ft

unit weight of water = 62.5 pounds/ft 3

Applied load applied load (R) = 10.2 kips
description x coordinate of base

application point = 11.5 ft
z coordinate of base
application point = 3.00 ft
inclination of load clockwise
from vertical = 11.4 deg

(e) CBEAR calculates q u = 5.34 ksf

(f) Comparison of methods indicates bearing capacities

Total Net
Method q u, ksf q’ u, ksf

Meyerhof 5.25 5.01
Hansen 4.69 4.45
Vesic 5.86 5.62
Program CBEAR 5.34 5.10

The net bearing capacity is found by subtracting γD D = 0.12 2 = 0.24 ksf from q u,
Equation 4-2. The resultant applied pressure on the footing is q r = R/(BW) =
10.2/(3 6) = 0.57 ksf. The factor of safety of all of the above methods with
respect to the net bearing capacity is on the order of q’ u/q r ≈ 9. The Hansen
method is most conservative.
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c. Rectangular Footing With Eccentricity, Base Tilt, and Ground Slope. A
rectangular footing , B = 3 ft and W = 5 ft, is placed in a cohesionless soil with
base tilt δ = 5 deg and ground slope β = 15 deg as illustrated in Table 4-5 and
Figure 4-7. φ’ = 26 deg and c = c a = 0.0. Soil wet unit weight γD = 120 lbs/ft 3,
subsurface soil wet unit weight γH = 130 lbs/ft 3, and depth to groundwater D GWT = 3
ft. Vertical applied load Q = 10 kips and horizontal load T = 0 kips, but M B = 5
kips-ft and M W = 10 kips-ft.

Figure 4-7. Shallow foundation with slope and base tilt

(1) Coordinate Adjustment. δ = 5 deg indicates right side elevation of the
base is 3 sin 5 deg = 0.26 ft higher than the left side. β = 15 deg indicates right
side foundation elevation at the ground surface is 3 sin 15 deg = 0.78 ft higher
than the left side.

(2) Effective Stress Adjustment. Average D GWT = 3 + 0.78/2 = 3.39 ft.
Average D = 2 + 0.78/2 - 0.26/2 = 2.26 ft. Adjustment of soil unit wet weight for
the water table from Equation 1-6 is

γHSUB = γH - γw = 0.130 - 0.0625 = 0.0675 kip/ft 3

H = B tan[45 + ( φ/2)] = 3.00 1.73 = 5.2 ft
γ ’ H = γHSUB + [(D GWT - D)/H] γw

= 0.0675 + [(3.39 - 2.26)/5.2] 0.0625 = 0.081 kip/ft 3

σ’ D = σD = γD D = 0.120 2.26 = 0.27 ksf

(3) Eccentricity Adjustment. Bending moments lead to eccentricities from
Equations 4-4c and 4-4d

eB = MB/Q = 5/10 = 0.5 ft
eW = MW/Q = 10/10 = 1.0 ft

Effective dimensions from Equations 4-4a and 4-4b are

B’ = B - 2e B = 3 - 2 0.5 = 2 ft
W’ = W - 2eW = 5 - 2 1.0 = 3 ft
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(4) Hansen Method. For φ’ = 26 deg, N q = 11.85 and N γ = 7.94 from Table
4-4. N c is not needed sinc e c = 0.0. From Table 4-5,

(a) Wedge correction factor ζ γ = ζ γs ζ γ i ζ γd ζ γβ ζ γ δ where ζ γ i = 1.00

ζ γs = 1 - 0.4 B’/W ’ = 1 - 0.4 2/3 = 0.733
ζ γd = 1.00
ζ γβ = (1 - 0.5 tan β) 5 = (1 - 0.5 tan 15) 5 = 0.487
ζ γ δ = e-0.047 δ tan φ’ = e-0.047 5 tan 26 = 0.892
ζ γ = 0.733 1.000 0.487 0.892 = 0.318

(b) Surcharge correction factor ζq = ζqs ζqi ζqd ζqβ ζqδ where ζqi = 1.00

ζqs = 1 + (B’/W’) tan φ = 1 + (2/3) 0.488 = 1.325
k = D/B = 2.26/3 = 0.753
ζqd = 1 + 2 tan φ’ (1 - sin φ’) 2 k = 1 + 2 0.488 (1 - 0.438) 0.753
ζqd = 1.232
ζqβ = ζ γβ = 0.487
ζqδ = e-0.035 δ tan φ’ = e-0.035 5 tan 26 = 0.918
ζq = 1.325 1.232 0.487 0.918 = 0.730

(c) Total ultimate bearing capacity from Equation 4-1 is

qu = 0.5 B γ ’H Nγ ζ γ + σ’D Nq ζq

= 0.5 2.00 0.081 7.942 0.318 + 0.27 11.85 0.730
= 0.205 + 2.335 = 2.54 ksf

(5) Vesic Method. For φ’= 26 deg, N q = 11.85 and N γ = 12.54 from Table 4-4.
Nc is not needed. From Table 4-6,

(a) Wedge correction factor ζ γ = ζ γs ζ γ i ζ γd ζ γβ ζ γ δ where ζ γ i = 1.00
= 1.00

ζ γs = 1 - 0.4 B/W = 1 - 0.4 2/3 = 0.733
ζ γd = 1.00
ζ γβ = (1 - tan β) 2 = (1 - tan 15) 2 = 0.536
ζ γ δ = (1 - 0.017 δ tan φ’) 2 = (1 - 0.017 5 tan 26) 2 = 0.919
ζ γ = 0.733 1.00 0.536 0.919 = 0.361

(b) Surcharge correction factor ζq = ζqs ζqi ζqd ζqβ ζqδ where ζqi = ζqδ

= 1.00

ζqs = 1 + (B/W) tan φ = 1 + 2/3 0.488 = 1.325
ζqd = 1 + 2 tan φ’ (1 - sin φ’) 2 k
ζqd = 1 + 2 0.488 (1 - 0.438) 2 0.753 = 1.232
ζqβ = ζ γβ = 0.536
ζqδ = ζ γ δ = 0.919
ζq = 1.325 1.232 0.536 0.919 = 0.804
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(c) Total ultimate bearing capacity from Equation 4-1 is

qu = 0.5 B γ ’H Nγ ζ γ + σ’D Nq ζq

= 0.5 2.00 0.081 12.54 0.361 + 0.27 11.85 0.804
= 0.367 + 2.572 = 2.94 ksf

(6) Program CBEAR. Input is as follows (refer to Figure 4-7):

(a) Foundation coordinates: x 1 = 10.00, y 1 = 3.00
x2 = 13.00, y 2 = 3.26

Length of footing: = 5.00

(b) Soil Coordinates: x s1 = 10.00, y s1 = 5.00
xs2 = 13.00, y s2 = 5.78

(c) Soil Properties: moist (wet) unit weight γH = 120 pounds/ft 3

saturated unit weight = γH

friction angle = 26 deg
cohesion = 0.00

(d) Options: One surcharge y coordinate of top of
layer subsurface soil = 3.00 ft

moist unit weight = 130 pounds/ft 3

saturated unit weight = 130 pounds/ft 3

friction angle = 26 degrees
cohesion = 0.0

Water table y coordinate of top of
description water table = 2.00 ft

unit weight of water = 62.5 pounds/ft 3

Applied load applied load (R) = 10.0 kips
description x coordinate of base

application point = 11.0 ft
z coordinate of base
application point = 2.00 ft
inclination of load clockwise
from vertical = 0.0 deg

(e) CBEAR calculates q u = 2.21 ksf

(f) Comparison of methods indicates bearing capacities

Total Net
Method q u, ksf q’ u, ksf

Hansen 2.55 2.28
Vesic 3.94 2.67
Program CBEAR 2.21 1.94
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Net bearing capacity is found by subtracting γD D = 0.12 (2 + 2.78)/2 = 0.27 ksf
from q u, Equation 4-2. The resultant applied pressure on the footing is q r =
Q/(B’W’) = 10/(2 3) = 1.67 ksf. The factors of safety of all of the above methods
are q’ u/q r < 2. The footing is too small for the applied load and bending moments.
Program CBEAR is most conservative. CBEAR ignores subsoil data if the soil is
sloping and calculates bearing capacity for the footing on the soil layer only.
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